Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(10)2022 May 13.
Article in English | MEDLINE | ID: covidwho-1855645

ABSTRACT

The present investigation focuses on the analysis of the interactions among human lactoferrin (LF), SARS-CoV-2 receptor-binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) receptor in order to assess possible mutual interactions that could provide a molecular basis of the reported preventative effect of lactoferrin against CoV-2 infection. In particular, kinetic and thermodynamic parameters for the pairwise interactions among the three proteins were measured via two independent techniques, biolayer interferometry and latex nanoparticle-enhanced turbidimetry. The results obtained clearly indicate that LF is able to bind the ACE2 receptor ectodomain with significantly high affinity, whereas no binding to the RBD was observed up to the maximum "physiological" lactoferrin concentration range. Lactoferrin, above 1 µM concentration, thus appears to directly interfere with RBD-ACE2 binding, bringing about a measurable, up to 300-fold increase of the KD value relative to RBD-ACE2 complex formation.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Lactoferrin , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/antagonists & inhibitors , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , COVID-19/virology , Humans , Lactoferrin/metabolism , Peptidyl-Dipeptidase A/metabolism , Protein Interaction Domains and Motifs , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism
2.
Commun Biol ; 5(1): 20221, 2022 01 06.
Article in English | MEDLINE | ID: covidwho-1612213

ABSTRACT

As the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) pandemic continues to spread, several variants of the virus, with mutations distributed all over the viral genome, are emerging. While most of the variants present mutations having little to no effects at the phenotypic level, some of these variants are spreading at a rate that suggests they may present a selective advantage. In particular, these rapidly spreading variants present specific mutations on the spike protein. These observations call for an urgent need to characterize the effects of these variants' mutations on phenotype features like contagiousness and antigenicity. With this aim, we performed molecular dynamics simulations on a selected set of possible spike variants in order to assess the stabilizing effect of particular amino acid substitutions on the molecular complex. We specifically focused on the mutations that are both characteristic of the top three most worrying variants at the moment, i.e the English, South African, and Amazonian ones, and that occur at the molecular interface between SARS-CoV-2 spike protein and its human ACE2 receptor. We characterize these variants' effect in terms of (i) residue mobility, (ii) compactness, studying the network of interactions at the interface, and (iii) variation of shape complementarity via expanding the molecular surfaces in the Zernike basis. Overall, our analyses highlighted greater stability of the three variant complexes with respect to both the wild type and two negative control systems, especially for the English and Amazonian variants. In addition, in the three variants, we investigate the effects a not-yet observed mutation in position 501 could provoke on complex stability. We found that a phenylalanine mutation behaves similarly to the English variant and may cooperate in further increasing the stability of the South African one, hinting at the need for careful surveillance for the emergence of these mutations in the population. Ultimately, we show that the proposed observables describe key features for the stability of the ACE2-spike complex and can help to monitor further possible spike variants.


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/genetics , Mutation , SARS-CoV-2/physiology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Molecular Dynamics Simulation , Protein Binding
3.
Comput Struct Biotechnol J ; 19: 3006-3014, 2021.
Article in English | MEDLINE | ID: covidwho-1230424

ABSTRACT

Since the beginning of the Covid19 pandemic, many efforts have been devoted to identifying approaches to neutralize SARS-CoV-2 replication within the host cell. A promising strategy to block the infection consists of using a mutant of the human receptor angiotensin-converting enzyme 2 (ACE2) as a decoy to compete with endogenous ACE2 for the binding to the SARS-CoV-2 Spike protein, which decreases the ability of the virus to enter the host cell. Here, using a computational framework based on the 2D Zernike formalism we investigate details of the molecular binding and evaluate the changes in ACE2-Spike binding compatibility upon mutations occurring in the ACE2 side of the molecular interface. We demonstrate the efficacy of our method by comparing our results with experimental binding affinities changes upon ACE2 mutations, separating ones that increase or decrease binding affinity with an Area Under the ROC curve ranging from 0.66 to 0.93, depending on the magnitude of the effects analyzed. Importantly, the iteration of our approach leads to the identification of a set of ACE2 mutants characterized by an increased shape complementarity with Spike. We investigated the physico-chemical properties of these ACE2 mutants and propose them as bona fide candidates for Spike recognition.

4.
Front Mol Biosci ; 8: 607443, 2021.
Article in English | MEDLINE | ID: covidwho-1116712

ABSTRACT

Despite the huge effort to contain the infection, the novel SARS-CoV-2 coronavirus has rapidly become pandemic, mainly due to its extremely high human-to-human transmission capability, and a surprisingly high viral charge of symptom-less people. While the seek for a vaccine is still ongoing, promising results have been obtained with antiviral compounds. In particular, lactoferrin is regarded to have beneficial effects both in preventing and soothing the infection. Here, we explore the possible molecular mechanisms with which lactoferrin interferes with SARS-CoV-2 cell invasion, preventing attachment and/or entry of the virus. To this aim, we search for possible interactions lactoferrin may have with virus structural proteins and host receptors. Representing the molecular iso-electron surface of proteins in terms of 2D-Zernike descriptors, we 1) identified putative regions on the lactoferrin surface able to bind sialic acid present on the host cell membrane, sheltering the cell from the virus attachment; 2) showed that no significant shape complementarity is present between lactoferrin and the ACE2 receptor, while 3) two high complementarity regions are found on the N- and C-terminal domains of the SARS-CoV-2 spike protein, hinting at a possible competition between lactoferrin and ACE2 for the binding to the spike protein.

SELECTION OF CITATIONS
SEARCH DETAIL